翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

optical wireless communications : ウィキペディア英語版
optical wireless communications
Optical wireless communications (OWC) is a form of optical communication in which unguided visible, infrared (IR), or ultraviolet (UV) light is used to carry a signal.
OWC systems operating in the visible band (390–750 nm) are commonly referred to as visible light communication (VLC). VLC systems take advantage of light emitting diodes (LEDs) which can be pulsed at very high speeds without noticeable effect on the lighting output and human eye. VLC can be possibly used in a wide range of applications including wireless local area networks, wireless personal area networks and vehicular networks among others.〔(M. Uysal and H. Nouri, “Optical Wireless Communications – An Emerging Technology”, 16th International Conference on Transparent Optical Networks (ICTON), Graz, Austria, July 2014 )〕 On the other hand, terrestrial point-to-point OWC systems, also known as the free space optical (FSO) systems,〔(A. Khalighi and M. Uysal, “Survey on Free Space Optical Communication: A Communication Theory Perspective”, IEEE Communications Surveys and Tutorials. )〕 operate at the near IR frequencies (750–1600 nm). These systems typically use laser transmitters and offer a cost-effective protocol-transparent link with high data rates, i.e., 10 Gbit/s per wavelength, and provide a potential solution for the backhaul bottleneck. There has also been a growing interest on ultraviolet communication (UVC) as a result of recent progress in solid state optical sources/detectors operating within solar-blind UV spectrum (200–280 nm). In this so-called deep UV band, solar radiation is negligible at the ground level and this makes possible the design of photon-counting detectors with wide field-of-view receivers that increase the received energy with little additional background noise. Such designs are particularly useful for outdoor non-line-of-sight configurations to support low power short-range UVC such as in wireless sensor and ad-hoc networks.
== History ==

The proliferation of wireless communications stands out as one of the most significant phenomena in the history of technology. Wireless technologies have become essential much more quickly during the last four decades and they will be a key element of society progress for the foreseeable future. The radio-frequency (RF) technologies wide-scale deployment has become the key factor to the wireless devices and systems expansion. However, the electromagnetic spectrum where the wireless systems are deployed is limited in capacity and costly according to its exclusive licenses of exploitation. With the raise of data heavy wireless communications, the demand for RF spectrum is outstripping supply and they become to consider other viable options for wireless communication using the upper parts of the electromagnetic spectrum not just RF.
Optical wireless communication (OWC) refers to transmission in unguided propagation media through the use of optical carriers, i.e., visible, infrared (IR), and ultraviolet (UV) band. Signalling through beacon fires, smoke, ship flags and semaphore telegraph 〔A. A. Huurdeman, ''The Worldwide History of Telecommunications'', Wiley Interscience, 2003.〕 can be considered the historical forms of OWC. Sunlight has been also used for long distance signalling since very early times. The earliest use of sunlight for communication purposes is attributed to ancient Greeks and Romans who used their polished shields to send signals by reflecting sunlight during battles.〔G. J. Holzmann and B. Pehrson, ''The Early History of Data Networks'' (Perspectives), Wiley, 1994.
〕 In 1810, Carl Friedrich Gauss invented the heliograph which involves a pair of mirrors to direct a controlled beam of sunlight to a distant station. Although the original heliograph was designed for geodetic survey, it was used extensively for military purposes during the late 19th and early 20th century. In 1880, Alexander Graham Bell invented the photophone, known as the world’s first wireless telephone system.
The military interest on photophone however continued. For example, in 1935, the German Army developed a photophone where a tungsten filament lamp with an IR transmitting filter was used as a light source. Also, American and German military laboratories continued the development of high pressure arc lamps for optical communication until the 1950s.〔M. Groth, "(Photophones revisited )".〕 In modern sense, OWC uses either lasers or light emitting diodes (LEDs) as transmitters. In 1962, MIT Lincoln Labs built an experimental OWC link using a light emitting GaAs diode and was able to transmit TV signals over a distance of 30 miles. After the invention of laser, OWC was envisioned to be the main deployment area for lasers and many trials were conducted using different types of lasers and modulation schemes.〔E. Goodwin, "A review of operational laser communication systems," ''Proceedings of the IEEE'', vol. 58, no. 10, pp. 1746–1752, Oct. 1970.〕 However, the results were in general disappointing due to large divergence of laser beams and the inability to cope with atmospheric effects. With the development of low-loss fiber optics in the 1970s, they became the obvious choice for long distance optical transmission and shifted the focus away from OWC systems.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「optical wireless communications」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.